
Cos’è un oggetto matematico? Un’invenzione o una scoperta? Qualcosa che c’era già prima da qualche parte e che il matematico “scopre”, oppure una costruzione artificiale che viene “inventata”? O, ancora, è una “creazione”, come la tela di un artista?
Capire come funziona la mente di un matematico e come in quella mente si generino le intuizioni equivale a capire il comportamento della mente umana nel suo complesso, e ci permette di addentrarci nei meandri del nostro pensiero. Non perché la matematica abbia uno statuto più elevato rispetto ad altre discipline, ma semmai proprio perché anche la matematica – come ogni cosa – si sviluppa in un ambiente poliedrico e cangiante, nei confronti del quale è permeabile. I matematici ricevono idee da altri campi del sapere e ne donano a loro volta, e quindi considerare questa disciplina come estranea alla nostra realtà, oltre ad essere dannoso è un errore.
Per questo nel libro di Gabriele Lolli si trova molta matematica, certo, ma anche letteratura, psicologia, arte, filosofia, tecnologia e neuroscienze. Attraverso l’analisi della creatività matematica, l’autore ci conduce nel mondo della psiche con Poincaré, in quello delle fiabe con Calvino o in quello del cervello con Dehaene – e in molti altri mondi ancora –, costruendo nel tragitto una storia dell’immaginazione umana.
Capire come funziona la mente di un matematico e come in quella mente si generino le intuizioni equivale a capire il comportamento della mente umana nel suo complesso, e ci permette di addentrarci nei meandri del nostro pensiero. Non perché la matematica abbia uno statuto più elevato rispetto ad altre discipline, ma semmai proprio perché anche la matematica – come ogni cosa – si sviluppa in un ambiente poliedrico e cangiante, nei confronti del quale è permeabile. I matematici ricevono idee da altri campi del sapere e ne donano a loro volta, e quindi considerare questa disciplina come estranea alla nostra realtà, oltre ad essere dannoso è un errore.
Per questo nel libro di Gabriele Lolli si trova molta matematica, certo, ma anche letteratura, psicologia, arte, filosofia, tecnologia e neuroscienze. Attraverso l’analisi della creatività matematica, l’autore ci conduce nel mondo della psiche con Poincaré, in quello delle fiabe con Calvino o in quello del cervello con Dehaene – e in molti altri mondi ancora –, costruendo nel tragitto una storia dell’immaginazione umana.
Dettagli libro
-
Editore
-
Testo originale
Sì -
Lingua
Italiano -
Lingua originale
Italiano -
Data di pubblicazione
-
Numero di pagine
180 -
Argomento
-
Collana
Sull'autore
Gabriele Lolli
Gabriele Lolli insegna Filosofia della matematica alla Scuola Normale Superiore di Pisa dal 2008, dopo aver insegnato Logica matematica allUniversità di Torino. Si è interessato di teoria degli insiemi, di applicazioni della logica all'informatica e allintelligenza artificiale, e di storia e filosofia della logica e della matematica. Tra i suoi libri ricordiamo: Sotto il segno di Gödel (2007), Guida alla teoria degli insiemi (2008), La guerra dei trentanni (1900-1930). Da Hilbert a Gödel (2011) e Nascita di un'idea matematica (2013). Per Bollati Boringhieri ha pubblicato: Teoria assiomatica degli insiemi (1974), Categorie, universi e principi di riflessione (1977), Lezioni di logica matematica (1978), Dagli insiemi ai numeri (1994), Il riso di Talete. Matematica e umorismo (1998), La crisalide e la farfalla. Donne e matematica (2000), QED. Fenomenologia della dimostrazione (2005), Discorso sulla matematica. Una rilettura delle lezioni americane di Italo Calvino (2011), Se viceversa. Trenta pezzi facili e meno facili di matematica (2014) e Numeri. La creazione continua della matematica (2015). È tra i curatori delledizione italiana delle Opere di Gödel (1999-2009).